更多>>精华博文推荐
更多>>人气最旺专家

朱彦名

领域:黑龙江电视台

介绍:你试试让他写篇很好的或者很有内涵和思想的个人总结,他写不出的。...

张明星

领域:新闻在线

介绍:结合材料二和所学经济知识,分析放宽市场准入规则是如何通过市场机制的作用使消费者受益的.(14分)【学以致用直面高考】【学以致用直面高考】物美价廉需求得到满足放宽准入规则市场机制作用消费者受益提高劳动生产率供给增加竞争激烈企业数量增加1、放宽市场准入规则可以降低企业进入市场的成本,提高企业进入市场的积极性和速度,使市场上企业的数量增加,从而导致供给增加和竞争加大;2、供给增加意味着商品种类的丰富和数量的增加,有利于满足消费者的多样化需求;3、竞争加大有利于提高商品质量,降低商品价格,最终使消费者受益。www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际

利来AG旗舰厅
本站新公告www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际
2lp | 2019-01-18 | 阅读(930) | 评论(829)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际
su3 | 2019-01-18 | 阅读(71) | 评论(920)
请问:张三应交纳的个人所得税是多少?他的应税所得额为25000-3500=21500元不超1500部分1500×3%=45(元)超过1500元至4500元部分3000×10%=300(元)超过4500元至9000元4500×20%=900(元)超过9000元至35000元12500×25%=3125(元)     45+300+900+3125=4370(元)应纳税:【知识拓展】认识税收在国民经济中的作用(1)税收是组织财政收入的基本形式(主要来源)。【阅读全文】
h1k | 2019-01-18 | 阅读(291) | 评论(951)
海关总署公告截图日本农林水产省对中国的决定表示欢迎,称将继续坚持不懈地展开劝说工作。【阅读全文】
rk1 | 2019-01-18 | 阅读(968) | 评论(313)
备注:按照流程,要召开2个党员大会,1个支部委员会。【阅读全文】
egd | 2019-01-18 | 阅读(449) | 评论(336)
新闻回眸2013年12月28日中午国家主席习近平来到北京庆丰包子铺就餐,排队点了6个猪肉大葱馅包子、一碗炒肝、一份芥菜,共21元。【阅读全文】
btv | 2019-01-17 | 阅读(978) | 评论(905)
2、监督绿化服务司的服务标准(1)每天不定时的对绿化司的工作人员的工作情况监督,尤其是现场负责人的工作安排方案。【阅读全文】
0ql | 2019-01-17 | 阅读(958) | 评论(27)
;鹰王胜出是需要经历 大智 大勇 大爱 ;从自我的重生,到鹰群的升级,再到族群的繁衍,鹰王重获的30年不只属于它自己。【阅读全文】
zjr | 2019-01-17 | 阅读(702) | 评论(174)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际,www.v66利来国际
1hl | 2019-01-17 | 阅读(705) | 评论(446)
7、下列是不同量筒的量程和分度值,小明同学要测量出密度是/cm的酒精100g,则应选择()A、50mL,5mLB、100mL,2mLC、250mL,5mLD、400mL,10mL3、为了测定某种小钢球的密度,先在一只空瓶中装满水,测得总质量是540g,然后将质量是的小钢球装入瓶内,溢出一部分水后,再测其总质量是625g,求这种小钢球的密度.*1.密度的公式?2.在实验室测量物体的质量的器材是什么?如何测量固体和液体的质量?3.在实验室测量物体的体积的器材是什么?如何测量固体和液体的体积?复习提问:第三节测量物质的密度密度的测量:ρ=m/v需要测量的量:①质量:m②体积V①质量:m天平(使用方法)规则:刻度尺不规则:量筒(量杯/使用方法)②体积V①质量:m天平②体积V:量筒认识量筒和量杯3.量筒上的标度单位:毫升mL(ml)1mL=1cm3最大测量值:常用100mL,200mL分度值(每小格刻度值):1mL,2mL,5mL一、量筒的使用1.量筒是测量液体体积的仪器;2.观察量筒,思考课本P117[想想做做]中的问题。【阅读全文】
b1f | 2019-01-16 | 阅读(832) | 评论(184)
读图完成下列问题。【阅读全文】
uo9 | 2019-01-16 | 阅读(215) | 评论(171)
”杭州青少年活动中心也开设有和编程有关的兴趣班,今年招生多达1400多人。【阅读全文】
fx0 | 2019-01-16 | 阅读(440) | 评论(760)
PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8【阅读全文】
ncw | 2019-01-16 | 阅读(848) | 评论(561)
这仍然是把倾斜的伞。【阅读全文】
tvf | 2019-01-15 | 阅读(367) | 评论(834)
2、GB50838-2015第条,敷设电力电缆的舱室,逃生口间距不宜大于200m。【阅读全文】
9gi | 2019-01-15 | 阅读(18) | 评论(325)
(一)强化对经济工作的监督。【阅读全文】
共5页

友情链接,当前时间:2019-01-18

w66com 利来国际最老牌 w66利来国际 利来国际备用 利来国际网址
www.w66.com 利来 尊龙现金娱乐活动 利来娱乐ag旗舰厅 利来娱乐国际最给利老牌网站 利来AG旗舰厅
w66.com 利来国际备用 利来国际官网平台 利来国际娱乐平台 w66.
www.w66.com 利来电游彩金 利来国际老牌博彩 利来国际备用 利来国际w66娱乐平台
夏邑县| 荆州市| 汉寿县| 南汇区| 离岛区| 浠水县| 东山县| 长武县| 南部县| 南汇区| 中西区| 富民县| 香港| 紫阳县| 乌审旗| 新建县| 离岛区| 红桥区| 宾川县| 四子王旗| 弥渡县| 珲春市| 灵武市| 红桥区| 类乌齐县| 社会| 科技| 儋州市| 宝鸡市| 修武县| 大安市| 巨野县| 美姑县| 岗巴县| 亳州市| 时尚| 砀山县| 锦屏县| 开化县| 五指山市| 堆龙德庆县| http://m.22419968.cn http://m.75566765.cn http://m.68132581.cn http://m.33311109.cn http://m.72000926.cn http://m.46608235.cn